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I. Introduction COyverTod)

The purpose of this work i§ to introduce new methods for the approxi-
mate solution of equationsﬁvéovem the propagation of linear periodic
waves through non-uniform media. Such phenomena occur in numerous
branches of physics, e. g. see [1-5]. 1In many cases the equations which

govern the propagation of waves form a first order system of hyperbolic

equations
3t + Z A, e + B¢ = f(x)exp{iwt} (1.1)
for x ¢ {, the latter being the domain of interest. The summation limit

n 1is the number of space dimensions that the solution vector 2 depends

on, Aj and B are real valued coefficient matrices which may depend on

x (but not on t) and £ is a complex valued vector forcing function.

1If 2 is assumed to be periodic in time with the same frequency as the

forcing function, i.e.
9 = ¢(x)exp{iwt} , (1.2)

then equation (1.1) reduces to the complex valued equation

n

E :A. ai+ B+ iwl)p = £ (1.3)
j ax, =

i=1 J .

The existence of periodic solution of equation (1.1) for general Aj, B
and f 1is not immediately obvious, and of course, also depends on the

boundary condition imposed on ¢. However, for a large class of problems




'

there is preponderant physical evidence that such solutions do exist.
Furthermore this conclusion is also supported by some prelininary mathe-
matical investigation [6], [7].

The coefficient matrices for the governing system (1.3) and the
attendant well posed boundary conditions may drastically vary in appear-
ance from one problem to another. Indeed, in some very simple instances,

the system (1.3) may be reduced to a second order equation

n
Eg—’(ig&x) Zb“‘*"'CP’F (1.4)

J=

where P may be one component of ¢ or some other variable, and where
the coefficients a, s bi and ¢ and the function F are in general
complex valued. In this paper we will discuss numerical methods for the
solution of systems of the type (1.3) and equations of the type (1.4).
There are four separate problems that may be posed in conjunction
with equations such as (1.3) and (1.4). The particular problem type is
determined by the extent of the domain {2 and the nature of the boundary
conditions imposed on T, the boundary of . We classify those problems
for which the domain § is bounded in its extent as interior problems.
In general it will be required that only one boundary conditions be speci-
fied on I'. Of course, the form of the boundary condition may vary,
usually in a piecewise manner, as one travels along [I'. Typically, for

the system (1.3) one component or a linear combination of some of the

components of ¢ is specified on T, i.e.

U 9= g(x for x e T (1.5)




where the function g and the component of the vector U are piece-
wise "smooth" function of x ¢ T. For the second order equation (1.4),

the boundary conditions would typically look like
aP + B-grad P = G(x) for x e‘I‘ -(1.6)

where the functions G and o and the components of the vector B are
also piecewise "smooth" functions of x € T.

The coefficients of the system (1.3) or the second order equation
(1.4) are in generél functions of w. For a discrete set of values of w
non-trivial solutions of equatiomns (1.3) and (1.5) [or equations (1.4)
and (1.6)] with £ =0 and g=0 [or F=0 and G = 0] exist. Those
values of w are called the eigenvalues of the homogeneous problem
determined by ;he differential equation, the domain §, and the boundary
condifion specified on [. The corresponding non-trivial solutions are
called eigenfunctions. Then in general, if w is an eigenvalue of a
specified homogeneous problem, the corresponding inhomogeneous problem
may not have a solution, and even when it does, the solution will not be
unique. This is, of course, the renowned Fredholm alternative [8]. There-
fore, in specifying an interior problem, we ‘tacitly assume that w 1is not
an eigenvalue. On the other hand, given a domain {, a differential equation
or system, and boundary conditions imposed on T, it is of practical interest
to determine: those values of w, i.e. the eigenvalues, for which non-trivial
solutions to the homogeneous problem exist. This type of problem is usually
called an eiganuazuelpnobﬂem and is a second problem that may be posed for
equation of the type (1.3) or (1.4).

A third type of problem, namely exteiion probLems, are characterized

by domains whose extent is infinite in every direction, i.e. Q 1is exterior



to some bounded domain. Here boundary conditions are imposed on the
bounded surface to which ¢ is exterior of, as well as at infinity. It

is well known [9], [10] that for the Helmholtz equation
2
AP + kP =0, _ (1.7)

unique solutions exist (for any k) only if P satisfies the radiation

condition (in three-dimensions)

lim rl%+ ik P | = 0. (1.8)
r >
where r 1is the distance from the origin of the coordinate systems.
It is often the case that as r - ®, the system (1.3) or the equation (1.4)
may be combined, if not exactly, at least asymptotically, to yield the
Helmholtz equgfion (1.7). Therefore the radiation condition (1.3) is again
applicable, where for the system (1.3) the P derivative is replaced by
an appropriate linear combination of the components of 9.

The fourth type problem is one in which ( 1is finite in its extent
in some directions, and infinite in others. These problems arise in the
propagation of waves in oceans, layered media, wave guides, etc. A study
of the numerical solution of such problems has been effected by Fix and
Marin [11] and will not be considered here.

The approximation solution of the linear wave problems described above
have numerous inherent difficﬁlties attached to them. Chief among these
are the problem of resolution, of indefiniteness and, for the exterior
problems, of infinite domains.

The hesofution problem can be described as follows: for a fixed domain

Q, as the forcing frequency increases one can expect an increase in the number

.
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of waves present in {, waves which have to be adequately described by
the approximate solution. For solutions in terms of eigenfunction
expansions or via fast Fourier transform techniques, the adequate reso-
lution of waves will require, at moderate values of w, the keeping of
a prohibitive number of terms in the series. For the limited class of
problems for which a free space Green's function, i.e.-a fundamental
solution of the differential equation, is known, the resolution problem
can best be alleviated by transforming the given problem into an integral
equation. This approach reduces the number of space dimensions by one,
but is in general limited to problems with very simple mean flows. For
finite difference or finite element discretizations, the resolution of
waves can be accomplished only by choosing a fine enough grid. This
restriction on the grids is one quite apart from questions of accuracy
as determined by truncation error analyses.

Standard finite difference, finite element or spectral discretiza-
tions of (1.35 result in an {ndefinite, nonsymmetric linear system of
algebraic equations. Furthermore, even in the self-adjoint case, i.e.
bi = O, discretizations of (1.4) will also result in indeﬁinéte algebraic
systems for large enough values of the forcing frequency w. Certainly,
in the case of finite difference and finite element methods, the algebraic
systems in question will in general be sparse in the sense that they'are
banded and that the non-zero entries in any row of the coefficient matrix
(of the algebraic system) is in general a constant independent of the
number of unknowns, i.e. the grid size. 1In view of ;he resolution problem
it would be advantageous to solve the algebraic system resulting from
discretization by an iterative method since these methods would require
computer storage proportional to the number of unknowns (for the problems

under consideration here).



Unfortunately, the standard iterative methods, e.g. Gauss-Seidel, SOR,
are not applicable to indefinite linear systems. Therefore, one is forced
to use some form of Gauss elimination to solve the linear system. For .
the banded linear systems in question here, the storage requirements are
roughly proportional, in two-dimensions, to N3/2, where N 1is the number .
of unknowns.

In this work separate iterative techniques are described for solving
systems of the type (1.3) and second order equations of the type (l.4).
In the first case we circumvent the above problems by introducing a least
squares discretization of the. system (1.3). The resulting algebraic system
is then symmetric and positive definite, thus enabling the use of standard
iterative methods such as Gauss-Seidel or SOR. This least squa;es—method
is discussed in section 3. For the second order equation (1.4), a standard
Galerkin/finite element discretization is used, yielding perhaps an indefinite
algebiaic system. This system is solved in an iterative manner by using
the multigrid technique of Nicolaides [12], [13], [14]. This technique is
discussed in section 4. In both cases the overall methods are insensitive
to the value of w insofar as their iterative character is concerned.

For exterior problems the domain { 1is <nfinife in its extent. Once
again, for those special problems for which a free space Green;s function
is known, the best approach to exterior problems is to convert them into
integral equations, thus not only reducing the number of independent
variables, but also rendering the lower dimensional domain finite [15].
For more complicated problems one turns to finite element or finite difference
discretizations. Of course, one must now choose a finite computational
domain. One apparent way of doing so is to map the infinite domain into a
finite one. However, since the problems of interest here have wave-like

solutions, such mappings would still result in the need of an infinite number




of grid points in order to resolve the infinite number of waves compressed
into the finite mapped domain. The alternative is to truncate the infinite
domain and then impose approximate radiation conditions on the boundary of

this finite domain. This process is discussed briefly in the first appendix.

1I. Model Problems

To fix ideas we will now present, in some detail, the derivation
of the governing equations for the propagation of linear periodic waves
through a lossless fluid which is itself in steady motion. For the sake
of simplicity we will restrict ourselves to two space dimensions. Further-
more, we will present typical boundary conditions for an interior problem.
The starting point in our analysis is those equations which govern the

general motion of a lossless fluid, i.e. the Eulerian equation of motion

-g-%+3-grad p+ Ypdivus=0
du 1
5t + (u.gradu + 5 grad p = 0 (2.1)
P p—Y = constant

where p,p and u are the fluid density, pressure and velocity, respectively,
.and Y is the constant ratio of the specific heats. The last equation
appearing in the system (2.1) is due to assuming that the fluid is perfect

and the motion is isotropic. In the absence of any acoustic disturbance

the fluid is assumed to be in steady motion. For such motion, we denote

the dependent variables with a zero subscript.



The first central assumption of linear acoustics is that the acoustic

disturbance in a small perturbation of the undisturbed steady flow, i.e.
p(x,y,t) = py(x,y) + p'(x,7,t) (2.2)
with
lp"/pyl << 1 (2.3)

where the prime superscript denotes the acoustic variable. Similar relations
hold for the other dependent variables. Substitution of equation (2.2) and
the analogous expressions for p and u yields, upon neglecting terms that
are quadratic in the acoustic variables, the system (1.1) with n = 2,

1=X, X2=Y, £=0,

uo Ypo 0 VO 0 Ypo
-Al = 1/D0 uy 0] A2 = 0 ) 0 (2.4)
0 0 u, /o0 0 A
t
Yox + vOy Pox pOy P
= - = 1]
B pox/(Ypopo) Yok Yoy and ¢ u
- |
Poy/ (YPoPg Vox Voy v

where u and v ére the components of u in the x and y direction,
respectively. Since £ vanishes, it is assumed that the acoustic perturba—'
tion is caused by periodic boundary disturbances. The boundary conditions
will in general be linear and whenever they are not homogeneous, the inhomo-
geneity will be a periodic function of time, i.e. proportional to exp(iwt).
The second central assumption gf acoustics is that the solution of the

initial value problem with its attendant periodic boundary conditions will

-8~




result, perhaps after some time or in an asymptotic manner, in a
periodic solution (in time) with the same frequency w as the forcing
term. This assumption enables us to substitute equation (1.2) into the
system (1.1), yielding the system (1.3) as the governing system for our

duct acoustics problem. We denote the components of ¢ by the relation

P

¢ = (U) . (2.5)
v

If the fluid is in uniform motion in the x-direction, i.e.
Ug = Y, Vo = 0, po and Pg constant, the system for P, U, and V
simplifies to
iwP + ulP + Ypo[Ux+Vy] =0

- | po(iU)U + umUx) + Px

]
o

[]
Q

po(lle + qux) + Py

which may be combined into the second order equation (1.4) with

11 = (l—Mz), a = -2ikM, b2 =0 and c = kz,

where M = uw/ao, k

a =0, a ) = 1, b

12~ %21
2

2 1
= mz/a2 = constant and a2 = Yp,/P is the square
0 0 0°"0

of the speed of sound of the undisturbed fluid. Of course, if u_ = 0,

the system (2.6) reduces to the Helmholtz equation (1.7). There are other

situations in which the system (1.3) for ¢ can be combined into a single

equation for either P or possibly for a velocity potential function,
e.g. see [3]. However, in general settings, the system (1.3) governing

¢ cannot be combined into a single equation.

(2.6)



If the mean flow is everywhere subsonic, the system (1.3) with
coefficients given by equation (2.4) is of elliptic type, as is the
second order equation (1.4). In either case we are required to specify
one boundary condition everywhere on the boundary of the domain
For an interior problem this boundary condition would take the form
of equation (1.5) or equation (1.6). 1In particular, in many applica-

tions, the boundary conditions take the specific form

P = g(x) for x €I (2.7)

and
n'U=2(x)P for x ¢ I'2 (2.8)

or
negrad P = iwpoz(g_)P for x €T (2.9)

where- Flki FZ = ', the boundary of {, the complex function g represents
a pressure disturbance entering  through Tl, the complex function =z
is the (possibly variable) impedence of the boundary F2, and n 1is the
unit normal to FZ' The combination of boundary conditions (2.7) and (2.8)
are used with the system (1.3) while the combination of equations (2.7) an

(2.9) are used with equation (1.4) or (1.7).

IIT. The Least Squares Finite Element Method

In this section we present a formal description of the least squares
method for the approximate solution of ystems of the type (1.3). In order

to simplify our discussion, let us formally write the system (1.3) as

L¢=£f in Q

" and the boundary conditions as

~-10-




Bo=2g on T.

Here 1 1is a first order linear differential operator, and B is a
1 Xm matrix, m being the dimension of ¢, i.e. the number of unknowns.

The least squares scheme is simply to minimize the functional
2 2
JilLe -£ + of IBg - gl (3.1)
Q r

over a finite dimensional space Sh of vector valued functions. The
weight 0 in essence "balances" the interior and boundary integrals, and
is essential for achieving the best possible accuracy [16]. Furthermore,
0 will depend on the dimension of Sh. A mathematical analysis of this
scheme can be found in Fix, et al. [17], [18].

Although finite element spaces using polynomials of any order could
be used, to fix ideas we shall restrict our attention to linear elements.
We let h parametrize the subdivision of I into subregions, e.g. let
h be the maximum linear dimension of any subregion. Then arbitrary sub-
division of the region Q will not result in optimal accurate approxima-
tions. (Here by optimal accuracy is meant the highest possible power of
h obtainable for the error in approximating the solution by elements in
Sh.) It was shown by Fix, et al. [18] that linear elements in directiomal
triangles (see Figure la) and bilinear elements in quadrilaterals (see
Figure 1b) do not result in optimally accurate approximations. On the
other hand linear elements in the "criss-cross' grid of Figure lc do yield
optimally accurate approximations. Indeed, using the "criss-cross'" grid,
the predicted accuracy is 0(h2) for each of the components of ¢. There-
fore we assume that { can be divided into quadrilateral subregions and

then, by drawing diagonals, each quadrilateral can be divided into four

-11-



triangles. This construction yields a "criss-cross” type grid. (We do
not entertain here the well documented [19], [20] methods of treating
curved boundaries.)

To continue our description of the method, we first let 2z = (xi,yi)
denote the nodes as shown in Figure lc. For each node we have a shape

function w? which is one at z. and zero at all other nodes. We write

M
Py = 3 o, () (3.2)

i=1
where M 1is the number of nodes and 92 is the vector of nodal values of
the approximation. We substitute equation (3.2) for ¢ in the functiomnal
(3.1) and then minimize over the space Sh. In this instance Sh has for

a basis the set
- V Sj' wi(x!y) i=l,...,M j=l’.-.!m

where &5 is the j-th unit vector of dimension m.

The above procedure produces the algebraic system
h
c ii =c (3.3)

Any details concerning the formation of the system (3.3) which have been
omitted in the above description are common to all finite element methods,
and for them the reader is referred to any of the many finite element methods
texts now available, e.g. [19] or [20]. The one exception is that the weight
0 appearing in the functiomal (3.1) should equal C/h, C a constant [16].
The matrix C is an N x N symmetric, positive definite, banded matrix.

In addition, the number of non-zero entries in any row is independent of h.

=12~




If, for instance, § is the unit square and if there are n nodes along
any given row [so that the mesh spacing h 1is 0(1/n)],then the number

of unknowns is

N = mn2 + 0(n)

and the half bandwidth is mn + 0(1).

The highly desirable matrix properties of symmetry, positive definiteness
and sparsity are of course a crucial aspect of the least squares approach
and the key to the method's insensitivity to the value of w. Insofar as
the applicability of iterative methods such as Gauss~Seidel or SOR for the
solution of the system (3.3) is concerned, the first two properties are
necessary. The third property, of course, makes the use of iterative methods
desirable, especially in view of the resolution problem discussed in section
1. Furthermore these properties would not be obtained if one used a Galerkin
or finite différence approximation to the system (1.3). Indeed, both these

approaches would yield a system

D$1h=i (3.4)

where D 1is an indefinite matrix of roughly the same size and typically

the same structure as C.

Numerical Examples

The first example problem is one whose exact solution is known and is
presented in order to illustrate the accuracy of the least squares method.
Specificially, we consider the system (2.6) with u_ = 0. By introducing

the nondimensionalizations

A 2 A /\_
P P/poa0 d U/a0 and ¢ = V/a0

-13-



we then have that

4 +¢ +1ikp =0

X y
Py +1ikld =0 (3.6)
P +ik9¥ =0
Py

where again k = w/ao. It is clear that p and therefore u and v

satisfy the Helmholtz equation
”~ 2/\
Ap + k¢ =0 (3.7)

In the numerical experiments we take Q to be the unit box {0<x<1,0<y<1}

and use for boundary conditions the relatioms

¥(x,0) = ¥(x,1) = 0 for 0<x<1

and (3.8)

4(1,y) =0, P,y cos(my) for 0 <y <1

With these boundary conditions the exact solution of the system (3.6) is

given by

A 2 2

p(x,y) = cos(my)cosh[u(l-x)]/coshn if k© < W
and

~ ‘ 2 2

p(x,y) = cos(my)cos[u(l-x)]/cosu if x>

2 2 3 ~ ~ .

where U = lk =T . The exact solution for & and ¥ can easily be derived

from these formulas and the system (3.6). Finally, for this problem, the

functional (3.1) to be minimized is given by

-14-




1N

1 1
A A A 2 A . A 2 A A 2
ffdxdy{]ux+vy+1kp| + [p tikd]” + [py+ikv| }
o’ 0

1 1
' %/dx{]”\‘r(x,o)lz + 196D |2 + %fdy{lﬁ(l,y)lz + |80,y —cos(ry) | %}
0 0

We denote by ﬁh, ﬁh and Gh the approximate least squares solution
of the system (3.6) and the boundary conditions (3.8). The L, error of the

approximation to P 1is defined to be
3
/\’\h AAhZ
e, = I18-27 = {85717} .
9]
Analogous expression hold for e, and e,. We also define the error
E = max |p(zj)—p (zj)l

P j=1,m

. which is the maximum absolute error at the nodes. Figures 2 and 3 display

the L2 errors in the least squares approximation to u, v and p as
functions of h for the problem defined by equation (3.6) and (3.8). Also
shown in these two figures is Ep as a function of h. These errors were
computed for approximatioh based on the linear "criss-cross" triangles
described earlier in this section. Figure 2 is for k = w/aO =1 and
Figure 3 is for k = 7/4. Note that the second value of k 1is greater than
m/2. so that for that k the Helmholtz equation (3.7), with the boundary
conditions (3.8), is indefinite. As is evident from the figures, all errors
are O(hz) as was predicted by the theory of Fix, et al. [17]. The results
of Figures 2 and 3 are representative of numerous computatiohs involving the
system (3.6) along with many different sets of boundary conditions. The

2
0(h™) behavior of the errors was confirmed in every instance.

-15-



Our second example illustrates the versatility of the least squares
finite element method. The problem considered is of the type discussed in
section 2. The mean flow is assumed undirectional and of constant pressure.

After appropriate nondimensionalizations we are considering the system (1.3)

with
1 0 0 0 1 0 O
Al ={ 1 u 0 A, = 0 0 0 and B = 0 0 du
1 2 or :
0O 0 u 1 0 © 0 o0 0

In our specific example, we will take for U the parabolic profile

Although the system (1.3) with the above values for Al, A2 and B 1looks
rather simple it cannot be combined into a single second order equation
for the pressure. Furthermore, an exact solution cannot be produced.

Once again the region of interest will be the unit square and the boundary

conditions are given by

|
o

p(0,y) =1 and u(l,y) - p(1,y) = for 0<y<1
and

v(x,0) + p(x,0) = 0 and v(x,l) - p(x,1) = 0 for 0<x<1 .
Figure 4 displays contour plots for approximations to the real and

imaginary part of u, v, and p. The calculations were made for

k = w/c0 = 7/4.

-16-




This concludes our presentation of the least squares finite element
method for the approximate solution of systems of the type (1.3). In
summary, the principal yirtues of the method are that it produces a
symmetric, positive definite and sparse algebraic system for any value of
the forcing frequency. It is applicable to general variable coefficient
problems. In conjunction with the "criss-cross" triangles of Figure lc
the method yields the best posssible accuracy obtainaple by elements of
the approximating space. A final virtue not previously pointed out is
that the treatment of boundary conditions via a boundary integral in the
functional (3.1) enables one to easily implement complicated boundary

conditions including those of the mixed type such as equation (2.8).

IV. The Finite Element Multigrid Method

In this section we describe the finite element multigrid method for
second order equation of the type (1.4). We consider here only those
problems for wﬁich equation (1.4) is elliptic, i.e. the matrix (aij)
is positive definite. The multigrid method is not a method of discre-
tization, but is a method of efficiently solving the algebraic system
resulting from a given discretization. In conjunction with finite element
methods, Nicolaides [12], [13], [14] has extensively analyzed the multi-
grid method. His theoretical and computational results apply to general
real self-adjoint elliptic equations, including indefinite omes such as
the Helmholtz equation. The basic result is that by use of the multigrid
method the algebraic system resulting from a finite element discretization
of an elliptic equation may be solved for within the discretization error
in O(N) operations, where N 1is the number of unknowns. In this work

we apply the finite element multigrid method to non-self adjoint second

order elliptic equations with complex valued coefficients. Our presentation

-17-



will be brief, and the reader is referred to the work of Nicolaides

for any details which are not unique to the equations considered here.
In order to discretize equation (1.4), we start with a weak formu-

lation of that equation and boundary conditions. To this end wve let

. denote that part of the boundary I of the region § on which

1
Dirichlet data is pfescribed, i.e. equation (1.6) with B = 0, and
F2 denote that part of T on whiéh Neumann or mixed data is pre-
scribed, i.e. equation (1.6) with B8 # 0. Then the weak form of
equation (1.4) is given by [19]:

Find a P € H%(Q) such that

n

- 32_ a—w- P* Y % o P = Px
1J ax Bx (J Bx ) + cP + (G-0P) =JF
i,j=1
2 F2 Q
(4.1)

for all ¢ ¢ H%(Q). Here Hr(Q) denotes the Sobolev space of order r,

the spaces Ht(Q) and Hé(Q) are respectively defined by

Hé(ﬂ) ferw@ : y=0 on r,}
l

and

u,::(fz) e ut@ ¥ =g(x) on T;}.

) 0
We assume that F € H (R) and (¢)* denotes the complex conjugate. We
|

have also assumed that on FZ the boundary condition (1.6) is of the usual

flux type, i.e.

Za n

i=1

-18-




where n, is a component of the outer normal to I'. Other boundary
conditions can also be handled by making appropriate changes in the
weak form (4.1) [19].

To find an approximate solution we first seek a Ph € P such that

equation (4.1) holds for all wh €Y where P and VY are finite

dimensional subspaces of Hl

E and Hé, respectively. The choice of

these subspaces and their bases is accomplished in the standard manner
[19] and will not be discussed here. In general P and Y will be
identical except for boundary terms. Once the choices of P and VY

and their bases are made, there results the matrix problem
Ke =d (4.2)

where the components of ¢ are the coefficients in the representation

of Ph in terms of the chosen basis for P. The matrix K will in general
be'complex valued, non-Hermitian and indefinite (in the sense that K

plus its conjugate transpose is indefinite).

The implementation of the multigrid method for the solution of equation
(4.2) exactly follows that described by Nicolaides [12], [13], [14] for
real self adjoint indefinite problems, and therefore will not be discussed
here. However, we do point out the crucial feature of that implementation
which is responsible for the method's convergence for non-self adjoint
indefinite problems. This feature is that on the coarsest grid, the algebraic
problem is solved by a direct method, i.e. Gauss elimination. In general
this coarse grid problem is small compared to the problem (4.2) and a
direct solution doe; not incur an appreciable penalty insofar as computer
time or storage is concerned. As pointed out by Nicolaides, some care must
be exercised in choosing the coarsest grid since too coarse a grid will

result in divergent iterates. In practice, this divergence can be monitored



by examining successive iterates, and if detected can be corrected by
choosing a finer coarsest grid. Since a direct method is used on the
coarsest grid, the multigrid method is not a pure iterative method.
However, insofar as the advantages usually ascribed to iterative methods
are concerned, e.g. low computer storage, the multigrid method certainly
suffers little compared to the Gauss-Seidel or SOR methods. Furthermore
the multigrid method requires O(N) operations to satisfactorily solve
(4.2) and in practice is found to converge much faster than other iterative
methods (when these converge). The O0(N) operation count remains valid
for indefinite non-self adjoint problems.

It is possible to use the Gauss-Seidel or SOR methods to solve for ¢

if one uses the relation
K*K ¢ = K*d (4.3)

where K* 1is the conjugate transpose of K. However, the matrix K*K
corresponds to a fourth order differential operator and the convergence
of standard iterative methods for the solution of equation (4.3) is

notoriously slow.

Many computational ekperiments have been carried out for equatioms
of the type (1.4) subject to boundary conditions of the type (1.6). Details
of the results of these computations can be found in Thomas [21]. Here, in
Tables 1 and 2, we present a few of these results. Specifically, Table 1

contains information Concerning the computational solution of the following

problem:
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P_+P + CP=0 for Oix,yil\

XX Yy
P(0,y) = 0
for 0<y<1
P_(1,y) + BP(1,y) = Bcos (oy) > (4.4)
P (0,x) + gP(0,x) = Bsin (1'5’5)
for 0<x<1
= sin(“z—x)[ecoso -0 sino] )

Py(l,X) + BP(l,X)
whose exact solution is

P(x,y) = sin(%x) cos (ay) . (4.5)
.3
Here 0 = [c-(m/2)°] . The parameters c¢ and B given in the table refer to
the parameters appearing in the description of the problem. The parameter
MO and Ml géfer to the number of intervals in each coordinate direction
for the coarsest and finest grids, respectively, used in the computation.
Finally, the last column in the table gives the computed "effective spectral

radius" (ESR) for an average multigrid cycle, where ESR is defined by
1

(I..2 error after j multigrid cycles )J
ESR =

Initial L2 error

The computations displayed were performed using j = 5, although variations
in j do not appreciably affect the results.

Lines (i) and (i1) of Table 1 jllustrate the result that the con-
vergence rate of the multigrid method is unaffected by the size of the
finest grid, i.e. the number of unknowns N. Lines (iii) - (v) are indica-
tive of the divergence of the method for not fine enough coarse grids. This

divergence is lérgely unaffected by the size of the finest grid, as can be
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seen by examining lines (iii) and (iv). However, if-the coarsest grid is
refined as in line (v), convergence is attained. Finally, the table indi-
cates that the ESR is bounded away from unity, i.e. is not 1-N-p, where
p > 0. This result, together with the independence of the ESR from N,
is the cause of the convergence of the method in O(N) operation.

Table 2 contains information concerning the computational solution
of the following non-self-adjoint problem:

= I E ~— 1 1&- i
Pt Pyy +P + Py + cP=Zcos 3 cos(0y) - 0sin =5 sin(oy) for 0 < x,y < l\

|
(=}

P(Oyy) =

P(1,y) cos(ay) >
P(x,0) = sin(%?)

- ‘ for 0<'x <1
P(x,1) coé(c)sin(%?)

(4.6)

whose exact solution is again equation (4.5). The table again indicates that
the ESR is bounded away from unity. Furthermore, it indicates ;hat some
improvement can be gained by making the coarsest grid coarser.

We close by noting that some ideas concerning multigrid methods for

. finite difference discretization of indefinite problems have been advanced

by Brandt [22].
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N

(11

(2]
(3]

[4}

(5]

[6]

(7]

[8]
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[11]

[12]
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(14]

[15]

[16]

(17]
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APPENDIX I: Remarks Concering Radiation Conditions

In this appendix we collect some remarks concerning radiation
conditions for exterior problems. We assume a familiarity with the

theory of radiation conditions for the Helmholtz equation (1.7).

Problems with Flow at Inginity

We consider problems for which at large distances (in all directions)
from the origin, the fluid media is in a state of uniform flow. For
instance, consider the scattering of sound by a body moving with uniform
subsonic velocity through a fluid. Then, relative to an observer fixed
with the body, the fluid at infinity moves with a uniform velocity. 1In
general the propagationof sound will be governed by the system (1.3) with
coefficient given by equation (2.4). However, in the far field, this
system can be approximated by the system (2.6) if we align the x-axis
- with the direction of the flow at infinity. Aé was noted previously, the
system (2.6) méy be combined into the single second order equation

AP-MZP - 2ik MP +k2P =0 (A1.1)
XX X

where A 1is the Laplacian operator. The transformation

_ 3
P = 0exp{ikMx/(1-M*)} and & = x/(1-M%) (A1.2)
reduce (Al.1) to the Helmholtz equation
~2
Ao+ kc=0 (A1.3)
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where AE is the Laplacian operator in (§,y) coordinates and

3

k= k/(l—Mz) . Fdr three dimensional problems the same construction is
possible, resulting in equation (Al.3) with AE representing the Laplacian
operator in (£,y,z) coordinate. TFor equation (Al.3) the appropriate
radiation conditions is given by [9]
n-1
lim |n 2 I%%

n-+o

+i§01} -0 (A1.4)

%
where n 1is the number of space dimensions and n = (£2+y2) [(£2+y2+zz) ]
in two [three] dimensions. Substitution of the transformation (Al.2) and

(Al.4) yields for n = 3

lim r|-§—5—+ iﬁ(l———XM—— P|} =0 (AL.5)
r>e T l—M2
2 2 2%

where r = (x +y +z°) . Equation (Al.5) is then the appropriate radiation
condition for>equation (Al.1) in three dimensions. The analogous two
dimensional formula may be derived in a similar manner.

In computations the radiation condition (Al.5) [or Al.4] may be
imposed by evaluating the limit at a finite radius, or more generally, at
a bounded surface in space. This introduces an error of 0(1/R2) in the
computations, where R 1is the distance at which the condition is imposed.
This error should be balanced with other discretization errors appearing
in the computations. This can be accomplished by choosing R to be

sufficiently large.

The Effect of Approximate Radiation Conditions on Uniqueness
The radiation condition (1.8) renders unique the solution of the

Helmholtz equation (1.7) in exterior domains [9,10]. If the radiation
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Ve

condition is applied at a finite distance, the solution of equation (1.7)

reamins unique. - This can be illustrated by the following simple example

¢xx+k2¢=o 0<x<1
6(0) = 0 (AL.6)
=

6, (1) +1k (1)

The solution of the differential equation and the first boundary condition

is given by
¢ = a sin(kx) (A1.7)

where o 1is a constant. Then applying the ''radiation condition" at

x=1 resultsAin
ak exp{ik} = 0 (A1.8)

which is satisfied only if o or k vanish. In either case, the solution
(Al.7) 1is the trivial solution. Therefore the solution of an inhomogeneous
version of the problem (Al.6) will be unique.

Problems similar to (Al.6) can be produced for two and three dimensions.

For instance, for n = 3 consider

2 2, _
¢rr+?¢r+k¢'° 1<r<R
$(1) = 0 (A1.9)
= 0

R[¢_(R) +1ik ¢(R)]
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Instead of equation (Al.8) we are led to

o k exp[ik (R-1)] - % sin[k®-D] =0
which for R > 1 and k real implies that o = 0. Therefore the solution
of (Al.9) vanishes.

Consistent numerical approximation of the Helmholtz equation with the
radiation condition imposed at a finite boundary will also be unique. To
illustrate this, let us consider a central difference approximation to the

problem (Al.6), i.e.

¢, =0
¢ -2¢, + ¢ + k2h2¢ =0 for j =1 J-1 (A1.10)
T B At 3 T '
1 ' .k _

where h =1/J and ¢j approximates ¢(jh). The solution of the first two

equations in (Al.10) is given by

¢j = Bsin(jkh). (Al.11)

"Substitution into the third equation in (Al.10) yields
/ -

K s[eXp{ik}”(l - 4 . o(kzhz)] =0

For h sufficiently small this implies that k or B vanish so that the

solution (Al.11) also vanishes. Then solution of inhomogeneous versions of

problem (Al.10) will be unique.
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c B M1 ESR

i 5 1 8 .765

ii 5 1 16 .761
iii 5 i 8 .127
iv 5 i 16 .158

v 5 i 16 .739
vi 5 1+1 16 .764
vii 15 1 16 .787
viii 15 i 16 .737
ix 15 1+14 16 .801

Table 1: Multigrid computations for problem (4.4).
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c M M ESR

0 1
1 4 16 .664
3 4 16 .608
5 4 16 .526
5 8 16 . 546
12 4 16 .693
12 8 16 .721

Table 2: Multigrid computation for problem (4.6).
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